

Influence of Hydrogen on the Fracture Toughness of a X65 Gas Transmission Pipeline Steel

Md Fahdul Wahab Chowdhury^a, Clotario V. Tapia-Bastidas^{a,b}, Joshua Hoschke,^a Jeffrey Venezuela^a, Ting Liu^a, Milos B. Djukic^c, Tom Depover^d, Kim Verbeken^d, Lenny Mcinnes^a, Maximilian Roethig^a, Amir Karimi^a, Andrej Atrens ^{a,*}

^a The University of Queensland, School of Mechanical and Mining Engineering, St. Lucia, Qld., 4072 Aus

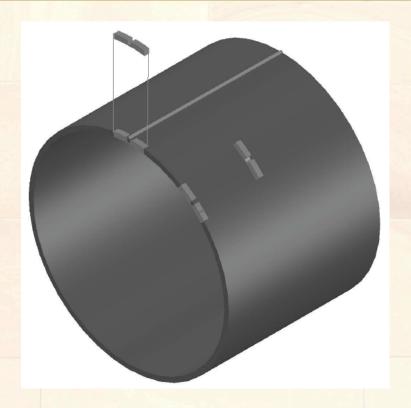
b Escuela Superior Politécnica Del Litoral – Espol, Guayaquil – Ecuador
 c University of Belgrade, Faculty of Mechanical Engineering, Belgrade 11120, Serbia
 d Ghent University, Department of Materials, Textiles and Chemical Engineering,
 Technologiepark 46, B-9052 Ghent

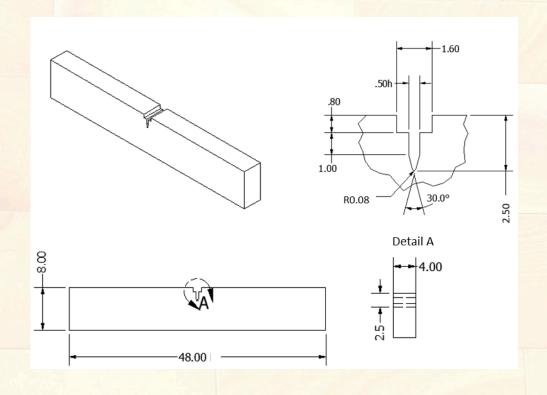

1. Hydrogen and X65D

In Australia, hydrogen is best transported through steel pipelines, but...

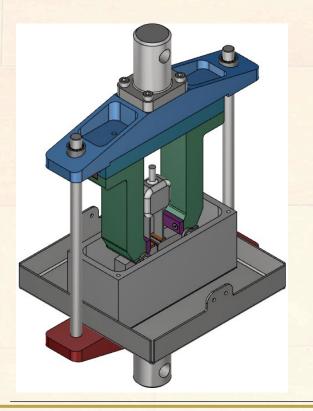
TECHNOLOGICAL QUESTION:

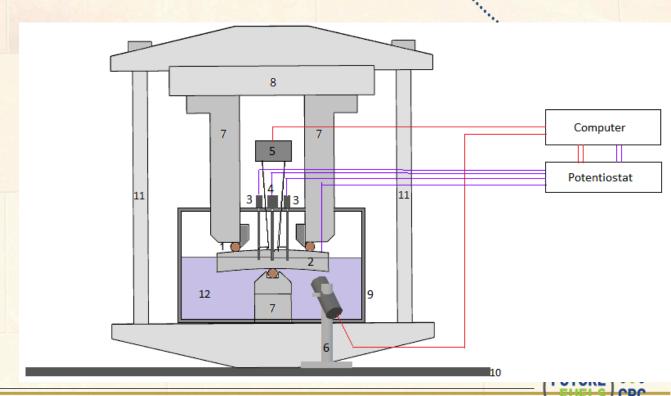
"are existing natural gas
pipelines fit to carry
hydrogen?"



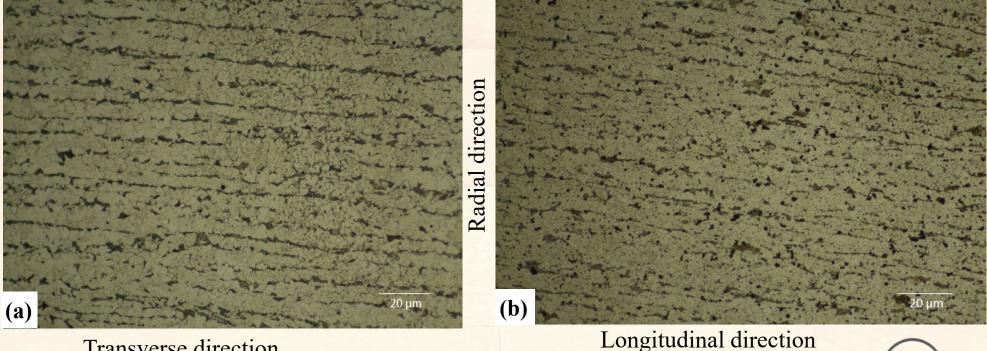

Objectives

- To measure the fracture toughness of DBNGP X65-D pipeline steel for a hydrogen fugactity somewhat greater than in service (200 bar gaseous hydrogen, 9 mA/cm²).
- To characterise the fracture toughness at a higher hydrogen fugacity.
- To understand the mechanism by which hydrogen facilitates fracture: Hydrogen assisted ductile (HAD) fracture or brittle (HAB) fracture.

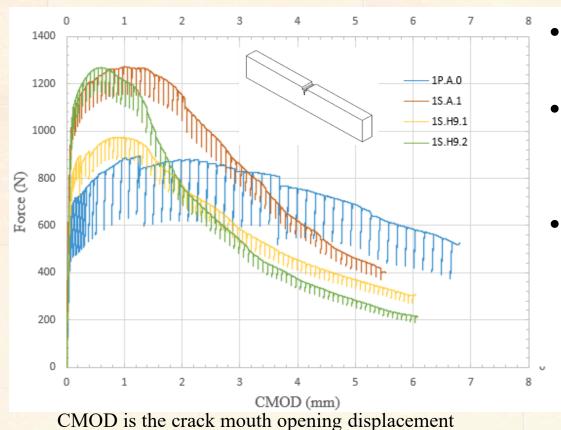



- Single-edge-notched specimen (SENB),
- Longitudinal crack growing in radial direction.
- CR. Circumferential (C) loading direction: perpendicular to the crack plane.
- Radial crack growth direction (R), towards the inside of the pipe.

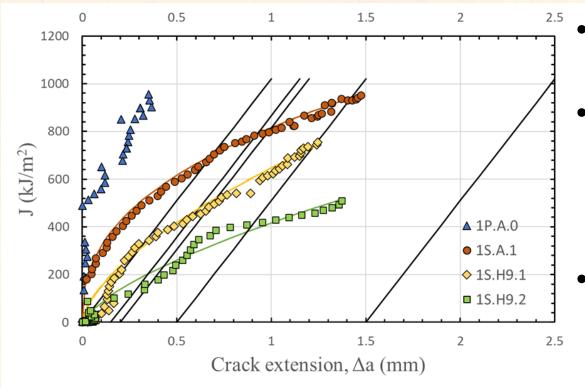
A three-point bend test apparatus was used to measure the fracture toughness using the *J*-integral using a SENB specimen in three-point bending. The crack length was measured optically and using the ASTM partial unloading compliance method. Cathodic hydrogen charging introduced hydrogen at 9 mA/cm².



The DBNGP X65-D pipeline steel had a ferrite matrix containing some pearlite, elongated in working direction:


(a) the radial – transverse plane and (b) the radial - longitudinal plane.

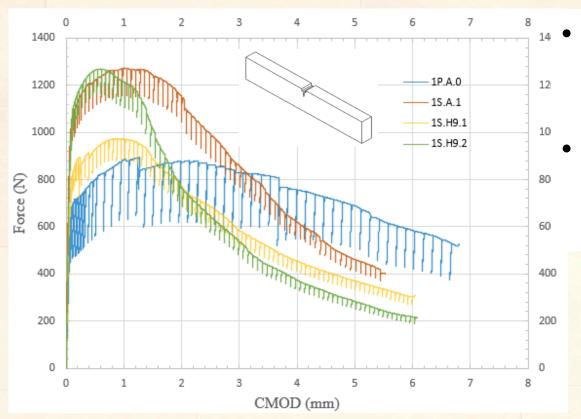
Force vs CMOD for: 1P.A.0 (plain tested in air); 1S.A.1 (side grooved tested in air); 1S.H9.1 (side grooved tested with hydrogen); 1S.H9.2 (side grooved tested with hydrogen at 9 mA/cm²).



- J determined by area under curve at each loading step.
- Crack length, *a*, determined optically and from unloading compliance by ASTM E1820.
- Crack length determined from compliance was in good agreement with optical measurement.

 $J-\Delta a$ curves (& ESIS construction lines $J=m'\,\sigma_y\Delta a$, m'=4.23) for: 1P.A.0 (plain specimen in air); 1S.A.1 (side grooved in air); 1S.H9.1 (side grooved with hydrogen charging); 1S.H9.2 (side grooved with hydrogen charging at 9 mA/cm²).

- ESIS is the European Structural Integrity Society.
- $J_{\rm Q}$ was determined from the intersection of the J curve & the 0.2 construction line.
 - " J_Q is analogous to yield stress."



- The ESIS construction line $J = m' \sigma_y \Delta a$, m' = 4.23 produced more conservative values of fracture toughness than that using ASTM E1820 ($J = 2\sigma_y \Delta a$) because it is somewhat steeper.
- ESIS is the European Structural Integrity Society.
- $J_{\rm O}$ was determined from intersection of J- Δa curve & 0.2 construction line.
- Values of J_0 can be compared between similar specimens.
- $J_{\rm Q} = J_{\rm IC}$ if B, $b_0 > \frac{10J_{\rm Q}}{\sigma_y}$; B is specimen thickness, b_0 is initial ligament.
- $J_{\rm IC}$ is an ASTM-valid measurement of fracture toughness.
- $J_{\rm IC}$ can be used in structural integrity evaluation for any structure.

Force vs CMOD for SENB: 1P.A.0 (plain in air); 1S.A.1 (side grooved in air); 1S.H9.1 (side grooved with hydrogen); 1S.H9.2 (side grooved with hydrogen at 9 mA/cm²).

- There were some unstable crack extensions in air and for 1S.H9.1.
- A fracture toughness value can be evaluated corresponding to each instability.

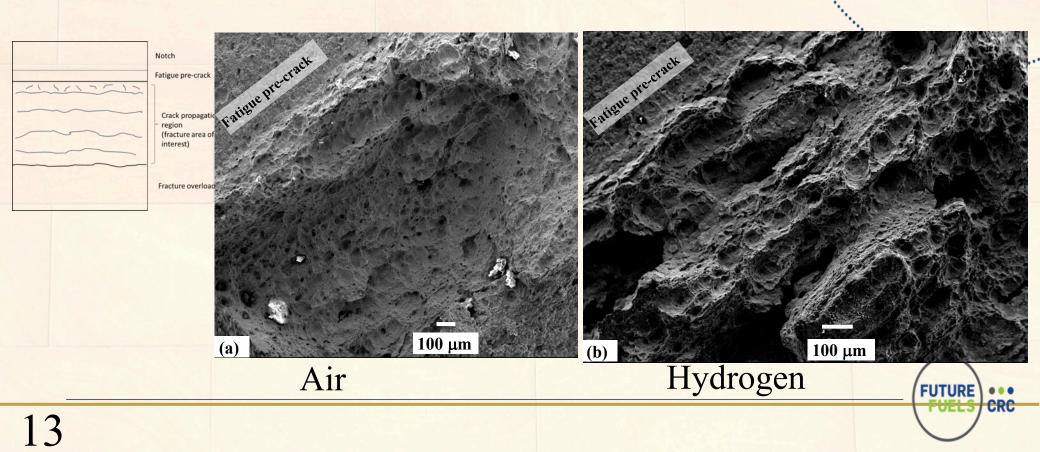
CMOD is the crack mouth opening displacement

Criteria check for valid J_{1C} or J_{1H} for type 1 specimens using the construction line $J = 4.23\sigma_{\nu}\Delta a$.

	Test condition	Specimen	B, mm	W, mm	a _{oq} , mm	$b_0,$ mm	σ _y , MPa	J _{Q,} kJ/m ²	K _{Q,} MPa√m	$rac{10J_Q}{\sigma_y}$	$B, b_0 > \frac{10J_Q}{\sigma_y}$
]	In air	1S.A.1	4	8	4.58	3.42	510	590	369	15.84	No
9	9 mA/cm ²	1S.H9.1	4	8	4.93	3.07	510	97*	150	_	_
٥	9 mA/cm ²	1S.H9.2	4	8	4.65	3.35	510	155	189	3.33	Yes

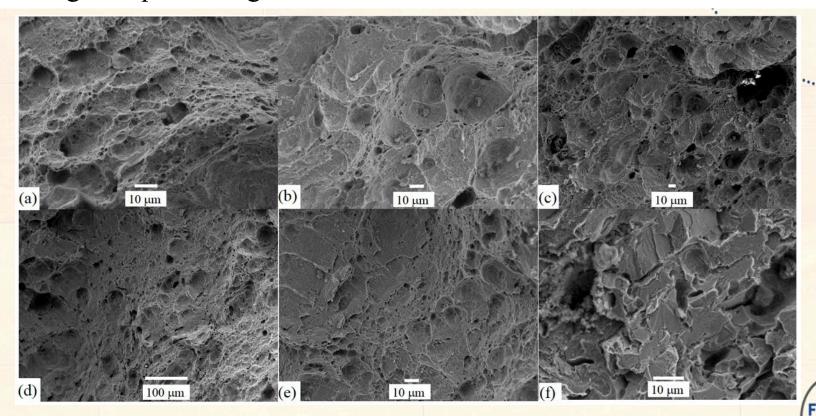
^{*}Designated as $J_{\rm QC}$; there are difference size requirements

Literature Comparison for DBNGP X65-D

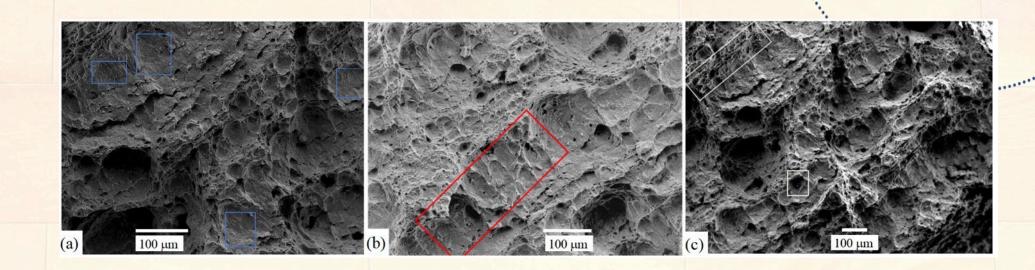


- 1. J_0 in air: 590 and 778 N/mm (369 MPa \sqrt{m} and 424 MPa \sqrt{m}).
- 2. $J_{\rm Q}$ at ~ 200 bar H₂ (at 9 mA/cm²) < $J_{\rm Q}$ in air.
- 3. J_{1C} at ~ 200 bar H₂: 155 and 97 N/mm (189 and 150 MPa \sqrt{m}).
- 4. ASTM-valid fracture toughness of $K_{\rm IC} = 189 \& 150 \text{ MPa}\sqrt{\text{m}}$ with H₂.

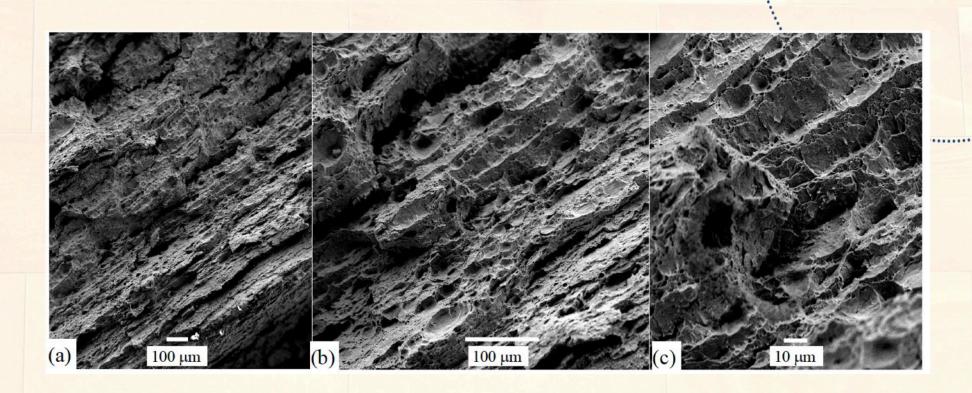
			**,
Steel	Environment	Fracture Toughness	Ref* (year)
X42, X52, X60, X70, X80	$6.9~\mathrm{MPa~H_2}$	95 – 111 MPa√m	38 (2012)
A516 G70	Air	150 MPa√m	41 (2019)
	3.5 MPa H_2	119 MPa√m	41
	6.9 MPa H_2^{-}	102 MPa√m	41
	$20.7~\mathrm{MPa}~\mathrm{H}_2$	89 MPa√m	41
	34.5 MPa H_2	82 MPa√m	41
X42	Air	147 MPa√m	43 (1982)
	4 MPa H_2	85 MPa√m	43
	6.5 MPa H_2	69 MPa√m	43
X70	Air	205 MPa√m	48 (2021)
	$10~\mathrm{MPa~H_2}$	104 MPa√m	48

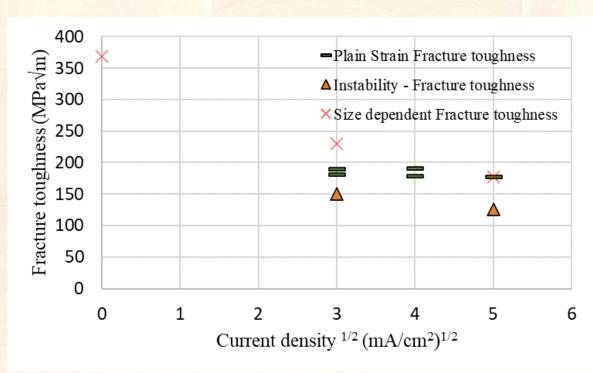


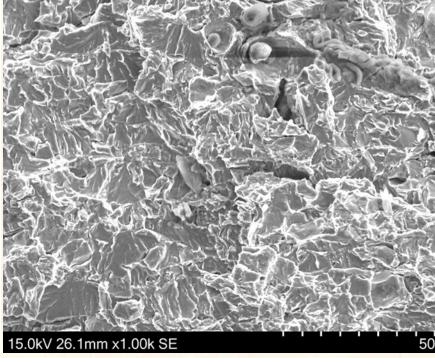
Fractography indicated ductile fracture: (a) specimen 1S.A.1 (tested in air) and (b) specimen 1S.H9.2 (pre-charged with hydrogen and hydrogen charged at 9 mA/cm² during the fracture toughness test).



Fracture of specimen 1S.A.1 (tested in air) was (a)-(e) ductile, and (f) brittle for the overload fracture of the remaining ligament of the specimen broken open after cooling in liquid nitrogen.


Ductile fracture with hydrogen (specimen 1S.H9.2, specimen 2 specimen type 1 with hydrogen at 9 mA/cm²).

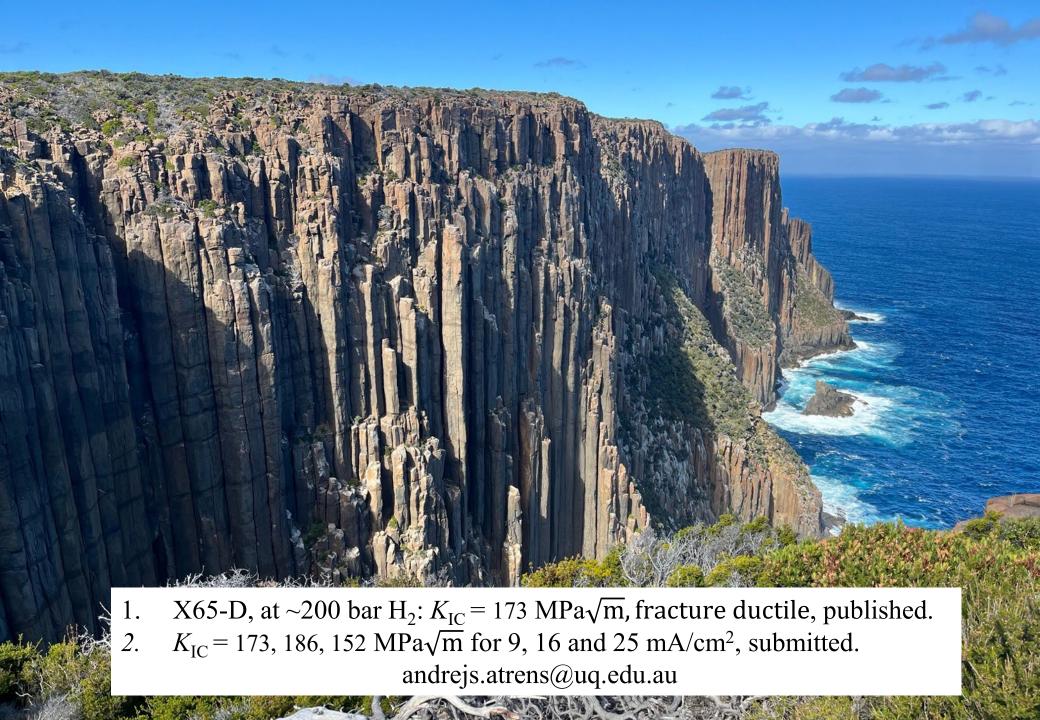

Ductile fracture with hydrogen (2S.H9.2 at 9 mA/cm²).



Fracture toughness at higher hydrogen fugacity.

At 9 mA/cm²- hydrogen assisted ductile (HAD) fracture by H assisted void nucleation, growth, and linkage, and dislocation emission at crack tip.

Hydrogen assisted brittle (HAB) fracture at 25 mA/cm²



Concluding Remarks

This study provided significant understanding of the influence of hydrogen on the fracture toughness of the X65 pipes used on the DBNGP:

- Hydrogen fugacities were greater than the operating pressures used on the DBNGP.
- Fractographic results provided understanding of the fracture mechanism at different hydrogen fugacities.
- Increasing hydrogen content resulting in decreasing fracture toughness and of the X65 steel.
- The experiment data also provided information required for the evaluation of the critical defect length and operating pressure.
- ASTM valid fracture toughness values were measured for cathodic hydrogen charging for various charging conditions.
- The fractography showed a ductile to brittle transition as the hydrogen content increased.

