

Gas Network's Role in the Energy Transition

Stefan Mero

October 2025

Introduction

Optimal Placement

- The Golden Triangle
- Electricity Network Constraints

Technical Specifications

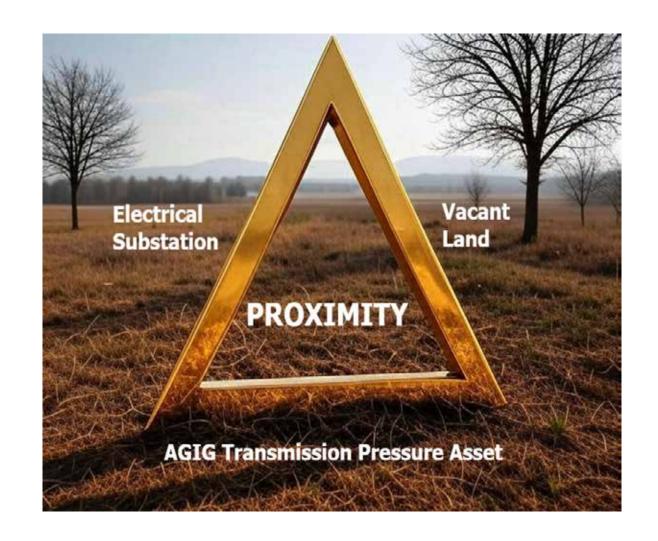
- Energy Storage network support/backup
- Grid Stability + Ancillary Services

Risk Sharing

Optimal Placement of Gas-Powered Generation

The Golden Triangle

Coincidence of:


- electrical assets in need of support
- gas distribution assets
- suitable land

Close to substations reducing grid connection times + costs

Suitably sized land available for development

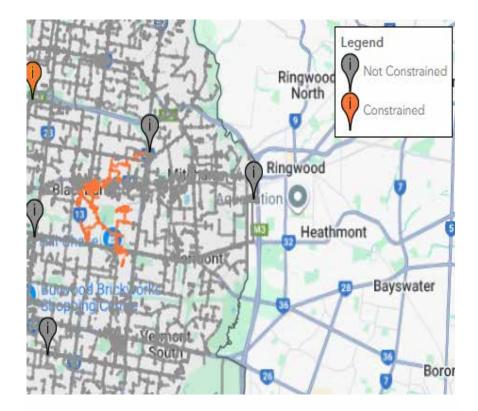
Proximity to gas distribution assets

- Transmission Pressure 12 MW+
- High pressure 2-12 MW

Optimal Placement of Gas-Powered Generation

Electricity Network Constraints

Distribution Annual Planning Report (**DAPR**) Visualisation Tools


Many small-scale opportunities for non-network solutions reducing power network expenditure

Constraints:

- Subtransmission Feeder
- High Voltage Feeder
- Zone Substation

Embedded generation as non-network support

Piclo-flex marketplace indicates non-network opportunity value, term and location

Technical Specifications

Energy Storage – Network Support/Backup

- Summer support most feasible spare gas network capacity
- Power network thermal constraints + peak summer power demand
- Most likely strategic opening
- Paves way for Grid Stability + Ancillary Services

Containerised Gas Reciprocating Units

2 – 12 MW embedded generation as non-network support 250-500 KPA, lower diameter pipe

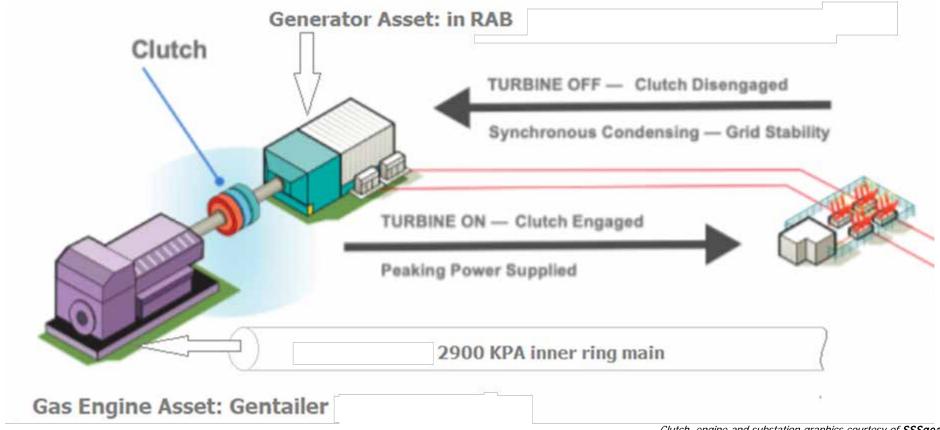
Limited run hours per year = low emissions

Technical Specifications

Grid Stability + Ancillary Services

Transmission to distribution substations = larger opportunities (12 MW+)

Loss of gas demand to electrification increases gas distribution system winter capacity


1800 -2900 KPA, 150 mm+ pipeline

Larger clutched gas-powered generation units act as synchronous condensers

Ability to grid synchronise = more revenue generating opportunities + feasiblity

Risk/Cost Sharing

Clutch, engine and substation graphics courtesy of SSSgears

Generator Asset cost sharing with electricity NSP RAB improves feasibility by \$35 million + saving on synchronous condenser investment

AGIG

agig.com.au

AGN

australiangasnetworks.com.au

DBP

dbp.net.au

MGN

multinetgas.com.au

