

HYDROGEN-READY LINE PIPE

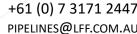
Cameron Dinnis

LFF Brisbane Pipelines and Infrastructure

Hydrogen-Ready?

- What does steel pipe need to be ready for?
- What is the Australian industry asking for?
- What are line pipe manufactures doing?
- What can designers specify?

Hydrogen Already...


- World-wide approximately 4500km of hydrogen pipelines
- Mainly in US and EU
- Collective Wisdom:
 - Small OD: DN100 DN300
 - Low strength: X52 and lower
 - ASME B31.12 Option A penalizes higher grades
 - IGC Doc 121/14 prohibits higher grades
 - Low operating stress: ~30% SMYS
- Small and inefficient

Ready for what?

- Future:
 - Larger OD: DN500 and greater
 - High strength: X65, X70 and higher?
 - High operating stress: ~72% SMYS
 - Potential for pressure cycling = fatigue
- Hydrogen embrittlement
 - Susceptible material + hydrogen + stress

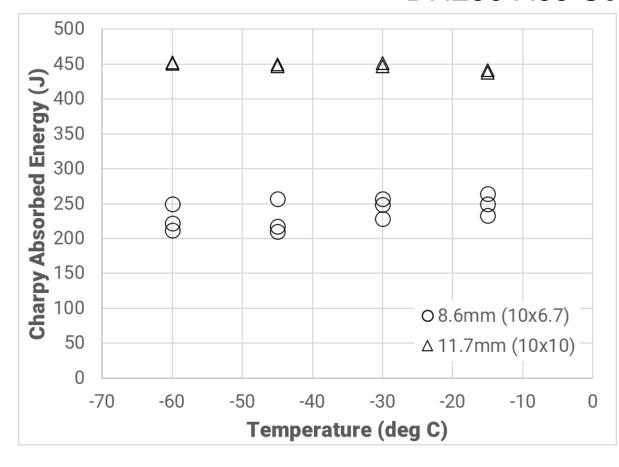
What makes a steel susceptible?

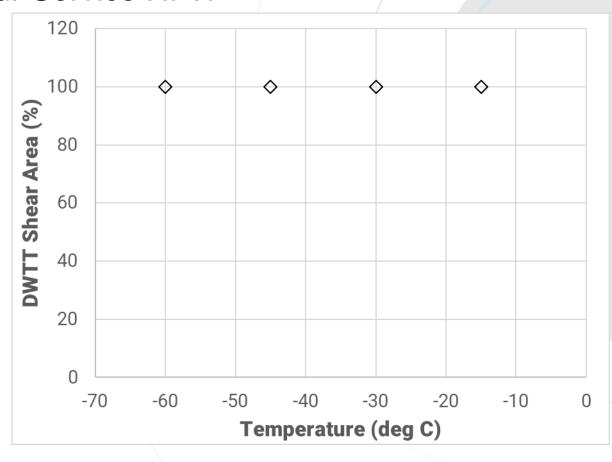
- Modern X52 steel and X70 steel are part of a spectrum
 - Fine grained ferrite, micro-alloyed, lean composition
- Hydrogen accumulates at microstructural discontinuities
 - pre-existing defects
 - grain boundaries
 - impurities, etc.
- Inclusion ratings, sulphur content, segregation levels
- Martensitic microstructures (hard and brittle)

Existing Solutions

- ASME B31.12 Appendix G
 - Microstructure of polygonal ferrite and acicular ferrite uniformly distributed through the cross-section
 - $C \le 0.07\%$
 - Nb microalloyed
 - Low Pcm
 - Centerline segregation rating of 2 or better on the Mannesmann scale
 - Thermo-mechanical controlled processing (TMCP)
 - Grain size of ASTM 9 or finer

- Sour Service Practice
 - Microstructure of polygonal ferrite
 - Low C (~0.04%)
 - Low S (<=0.001%)
 - Microalloyed (generally Nb)
 - Low Pcm
 - Centerline segregation rating of 2 or better on the Mannesmann scale
 - Thermo-mechanical controlled processing (TMCP), or Q+T
 - Grain size of ASTM 11
 - Hardness limits





What does that get you?

DN250 X65 Sour Service HFW

What are the gaps?

- ASME B31.12 Option B specifies a threshold fracture toughness
- Hydrogen-Assisted Fatigue Crack Growth Rates

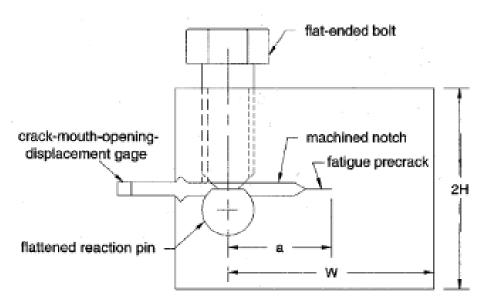
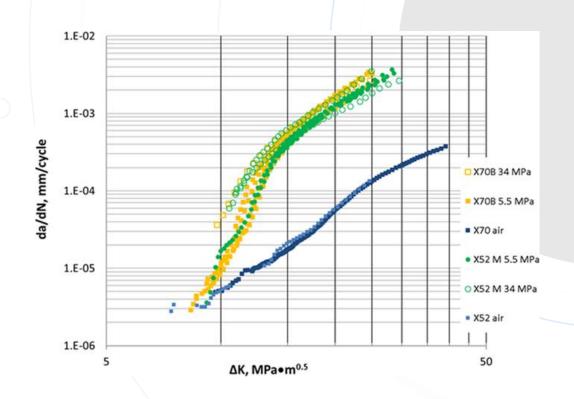
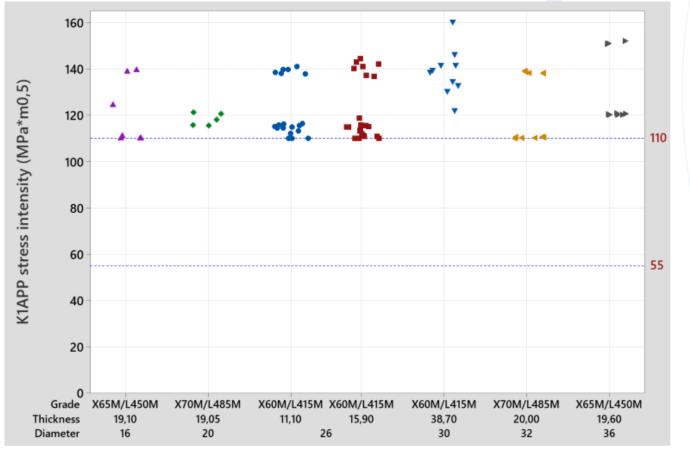
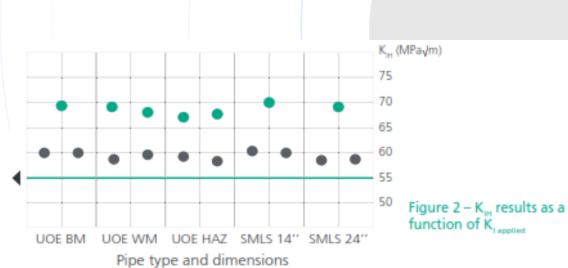



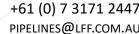
FIG. 3 Typical Test Arrangement for Constant Displacement K_{IEAC}
Tests with Modified Bolt-Load Compact Specimen; H/W = 0.486

What is the Australian Industry specifying?

- APGA Hydrogen Pipeline CoP
- Fracture Toughness
 - Not the same test method as ASME B31.12 Option B
- Benefits:
 - Gives an actual fracture toughness value, not just a threshold
 - More representative test of hydrogen embrittlement






What are pipe manufacturers doing?

Test programs using ASME B31.12 methods

What are pipe manufacturers doing?

- Test programs using ASME B31.12 methods
 - "Qualification" defined as K_{IH} ≥ 55MPa.m^{1/2}
 - Excludes the "other side": calculating the required K_{IA}
- Installing test equipment in their laboratories
 - No longer just research labs
 - ASME B31.12 methods are becoming the "default" test methods
 - Likely to become an accepted MPQT

What's the Spec?

- Consider the size of the pipeline
- Specification precedents already exist
 - Sour service practice
 - ASME B31.12 Appendix G guidelines
- Defect size base-lines
 - ≥95% SMYS hydrostatic tests?
 - API 5L Annex K weld seam NDT
 - Full body NDT?
- "Standardised" fracture toughness test methods

Hydrogen-Ready.

- Pipe steels exist to mitigate hydrogen embrittlement
- Pipeline design methods exist to mitigate hydrogen embrittlement
- Fatigue is main issue
 - Needs to be dealt with in design
- Australian Industry taking a leading approach to specification

